MathDB
Problems
Contests
National and Regional Contests
Ukraine Contests
Official Ukraine Selection Cycle
Ukraine Team Selection Test
2014 Ukraine Team Selection Test
5
i+j = C_{n}^{i} + C_{n}^{j} (mod 2)
i+j = C_{n}^{i} + C_{n}^{j} (mod 2)
Source: Ukraine TST 2014 p5
April 30, 2020
Integers
number theory
modulo
Problem Statement
Find all positive integers
n
≥
2
n \ge 2
n
≥
2
such that equality
i
+
j
≡
C
n
i
+
C
n
j
i+j \equiv C_{n}^{i} + C_{n}^{j}
i
+
j
≡
C
n
i
+
C
n
j
(mod
2
2
2
) is true for arbitrary
0
≤
i
≤
j
≤
n
0 \le i \le j \le n
0
≤
i
≤
j
≤
n
.
Back to Problems
View on AoPS