A Geometric Inequality?
Source: China TST 2007, Problem 5
December 29, 2008
Geometry inequality
Problem Statement
Let be real numbers satisfying A\equal{}\left |\sum^n_{i\equal{}1}x_i\right |\not \equal{}0 and B\equal{}\max_{1\leq i vectors in the plane, there exists a permutation of the numbers such that \left |\sum_{i\equal{}1}^nx_{k_i}\vec{\alpha_i}\right | \geq \dfrac{AB}{2A\plus{}B}\max_{1\leq i\leq n}|\alpha_i|.