MathDB
A Geometric Inequality?

Source: China TST 2007, Problem 5

December 29, 2008
Geometry inequality

Problem Statement

Let x1,,xn x_1, \ldots, x_n be n>1 n>1 real numbers satisfying A\equal{}\left |\sum^n_{i\equal{}1}x_i\right |\not \equal{}0 and B\equal{}\max_{1\leq in n vectors αi \vec{\alpha_i} in the plane, there exists a permutation (k1,,kn) (k_1, \ldots, k_n) of the numbers (1,,n) (1, \ldots, n) such that \left |\sum_{i\equal{}1}^nx_{k_i}\vec{\alpha_i}\right | \geq \dfrac{AB}{2A\plus{}B}\max_{1\leq i\leq n}|\alpha_i|.