MathDB
Miklos Schweitzer 1978_10

Source: binomial random variable

January 25, 2009
parameterizationlimitprobability and stats

Problem Statement

Let Yn Y_n be a binomial random variable with parameters n n and p p. Assume that a certain set H H of positive integers has a density and that this density is equal to d d. Prove the following statements: (a) \lim _{n \rightarrow \infty}P(Y_n\in H)\equal{}d if H H is an arithmetic progression. (b) The previous limit relation is not valid for arbitrary H H. (c) If H H is such that P(YnH) P(Y_n \in H) is convergent, then the limit must be equal to d d. L. Posa