MathDB
Prove that there exists $6$ pairs of tangent circles

Source: Junior Olympiad of Malaysia Shortlist 2015 G7

July 17, 2015
geometry

Problem Statement

Let ABCABC be an acute triangle. Let HA,HB,HCH_A,H_B,H_C be points on BC,AC,ABBC,AC,AB respectively such that AHABC,BHBAC,CHCABAH_A\perp BC, BH_B\perp AC, CH_C\perp AB. Let the circumcircles AHBHC,BHAHC,CHAHBAH_BH_C,BH_AH_C,CH_AH_B be ωA,ωB,ωC\omega_A,\omega_B,\omega_C with circumcenters OA,OB,OCO_A,O_B,O_C respectively and define OABωB=PABBO_AB\cap \omega_B=P_{AB}\neq B. Define PAC,PBA,PBC,PCA,PCBP_{AC},P_{BA},P_{BC},P_{CA},P_{CB} similarly. Define circles ωAB,ωAC\omega_{AB},\omega_{AC} to be OAPABHC,OAPACHBO_AP_{AB}H_C,O_AP_{AC}H_B respectively. Define circles ωBA,ωBC,ωCA,ωCB\omega_{BA},\omega_{BC},\omega_{CA},\omega_{CB} similarly.
Prove that there are 66 pairs of tangent circles in the 66 circles of the form ωxy\omega_{xy}.