MathDB
Putnam 2004 A6

Source:

December 11, 2004
Putnamfunctionintegrationcalculuscollege contests

Problem Statement

Suppose that f(x,y)f(x,y) is a continuous real-valued function on the unit square 0x1,0y1.0\le x\le1,0\le y\le1. Show that 01(01f(x,y)dx)2dy+01(01f(x,y)dy)2dx\int_0^1\left(\int_0^1f(x,y)dx\right)^2dy + \int_0^1\left(\int_0^1f(x,y)dy\right)^2dx (0101f(x,y)dxdy)2+0101[f(x,y)]2dxdy.\le\left(\int_0^1\int_0^1f(x,y)dxdy\right)^2 + \int_0^1\int_0^1\left[f(x,y)\right]^2dxdy.