MathDB
Inequality for six variables-China South East Olympiad 2009

Source:

September 18, 2010
inequalitiesinequalities proposed

Problem Statement

Let x,y,zx,y,z be positive reals such that a=x(yz)2\sqrt{a}=x(y-z)^2, b=y(zx)2\sqrt{b}=y(z-x)^2 and c=z(xy)2\sqrt{c}=z(x-y)^2. Prove that a2+b2+c22(ab+bc+ca)a^2+b^2+c^2 \geq 2(ab+bc+ca)