MathDB
Problem 6 vietnamese tst 2006

Source: Vietnamese TST 2006

April 18, 2006
inductionnumber theory proposednumber theory

Problem Statement

The real sequence {ann=0,1,2,3,...}\{a_n|n=0,1,2,3,...\} defined a0=1a_0=1 and an+1=12(an+13an). a_{n+1}=\frac{1}{2}\left (a_{n}+\frac{1}{3 \cdot a_{n}} \right ). Denote An=33an21. A_n=\frac{3}{3 \cdot a_n^2-1}. Prove that AnA_n is a perfect square and it has at least nn distinct prime divisors.