MathDB
China Second Round Olympiad 2018Test 2 Q1

Source:

September 9, 2018
inequalitiesChina

Problem Statement

Let a1,a2,,an,b1,b2,,bn,A,B a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n,A,B are positive reals such that aibi,aiA a_i\leq b_i,a_i\leq A (i=1,2,,n)(i=1,2,\cdots,n) and b1b2bna1a2anBA.\frac{b_1 b_2 \cdots b_n}{a_1 a_2 \cdots a_n}\leq \frac{B}{A}. Prove that(b1+1)(b2+1)(bn+1)(a1+1)(a2+1)(an+1)B+1A+1.\frac{(b_1+1) (b_2+1) \cdots (b_n+1)}{(a_1+1) (a_2+1) \cdots (a_n+1)}\leq \frac{B+1}{A+1}.