MathDB
Sad Inequality

Source: 2018 China TST Day 4 Q2

January 21, 2018
inequalities

Problem Statement

Given positive integers n,kn, k such that n4kn\ge 4k, find the minimal value λ=λ(n,k)\lambda=\lambda(n,k) such that for any positive reals a1,a2,,ana_1,a_2,\ldots,a_n, we have i=1naiai2+ai+12++ai+k2λ \sum\limits_{i=1}^{n} {\frac{{a}_{i}}{\sqrt{{a}_{i}^{2}+{a}_{{i}+{1}}^{2}+{\cdots}{{+}}{a}_{{i}{+}{k}}^{2}}}} \le \lambda Where an+i=ai,i=1,2,,ka_{n+i}=a_i,i=1,2,\ldots,k