MathDB
Irish Mathematical Olympiad 2014 (2)

Source: Paper 1 , Problem 5

September 6, 2014
inequalities proposedinequalities

Problem Statement

Suppose a1,a2,,an>0a_1,a_2,\ldots,a_n>0 , where n>1n>1 and i=1nai=1\sum_{i=1}^{n}a_i=1. For each i=1,2,,ni=1,2,\ldots,n , let bi=ai2j=1naj2b_i=\frac{a^2_i}{\sum\limits_{j=1}^{n}a^2_j}. Prove that i=1nai1aii=1nbi1bi.\sum_{i=1}^{n}\frac{a_i}{1-a_i}\le \sum_{i=1}^{n}\frac{b_i}{1-b_i} . When does equality occur ?