MathDB
Prove the upper and lower bound of x_n

Source: Baltic Way 2000

December 17, 2010
integrationtrigonometrylogarithmsalgebra proposedalgebra

Problem Statement

For every positive integer nn, let xn=(2n+1)(2n+3)(4n1)(4n+1)(2n)(2n+2)(4n2)(4n)x_n=\frac{(2n+1)(2n+3)\cdots (4n-1)(4n+1)}{(2n)(2n+2)\cdots (4n-2)(4n)} Prove that 14n<xn2<2n\frac{1}{4n}<x_n-\sqrt{2}<\frac{2}{n}.