MathDB
2013 China Second Round Olympiad (B) Test 2 Q1

Source: 13 Oct 2013

October 14, 2013
modular arithmeticnumber theory proposednumber theoryChinaBPSQ

Problem Statement

For any positive integer nn , Prove that there is not exist three odd integer x,y,zx,y,z satisfing the equation (x+y)n+(y+z)n=(x+z)n(x+y)^n+(y+z)^n=(x+z)^n.