MathDB
Prove this integral inequality of the convex function

Source: 2019 Jozsef Wildt International Math Competition

May 19, 2020
integrationinequalitiesconvex functioncalculusfunction

Problem Statement

Let f:(0,+)Rf : (0,+\infty) \to \mathbb{R} a convex function and α,β,γ>0\alpha, \beta, \gamma > 0. Then 16α06αf(x)dx + 16β06βf(x)dx + 16γ06γf(x)dx\frac{1}{6\alpha}\int \limits_0^{6\alpha}f(x)dx\ +\ \frac{1}{6\beta}\int \limits_0^{6\beta}f(x)dx\ +\ \frac{1}{6\gamma}\int \limits_0^{6\gamma}f(x)dx 13α+2β+γ03α+2β+γf(x)dx + 1α+3β+2γ0α+3β+2γf(x)dx \geq \frac{1}{3\alpha +2\beta +\gamma}\int \limits_0^{3\alpha +2\beta +\gamma}f(x)dx\ +\ \frac{1}{\alpha +3\beta +2\gamma}\int \limits_0^{\alpha +3\beta +2\gamma}f(x)dx\ + 12α+β+3γ02α+β+3γf(x)dx+\ \frac{1}{2\alpha +\beta +3\gamma}\int \limits_0^{2\alpha +\beta +3\gamma}f(x)dx