MathDB
A function from Q to Z cannot be monotone

Source: IMC 2024, Problem 6

August 8, 2024
functioncalculus

Problem Statement

Prove that for any function f:QZf:\mathbb{Q} \to \mathbb{Z}, there exist a,b,cQa,b,c \in \mathbb{Q} such that a<b<ca<b<c, f(b)f(a)f(b) \ge f(a) and f(b)f(c)f(b) \ge f(c).