MathDB
functional inequality

Source: Middle European Mathematical Olympiad T-2

September 21, 2014
inequalitiesfunctionalgebra proposedalgebra

Problem Statement

Determine all functions f:RRf : \mathbb{R} \to \mathbb{R} such that xf(xy)+xyf(x)f(x2)f(y)+x2y xf(xy) + xyf(x) \ge f(x^2)f(y) + x^2y holds for all x,yRx,y \in \mathbb{R}.