MathDB
if MA\cdot MC + MA\cdot CD = MB \cdot MD then <BKC =< BDC

Source: Slovenia TST 2005 p1

February 15, 2020
equal anglesgeometrydiagonals

Problem Statement

The diagonals of a convex quadrilateral ABCDABCD intersect at MM. The bisector of ACD\angle ACD intersects the ray BABA at KK. Prove that if MAMC+MACD=MBMDMA\cdot MC + MA\cdot CD = MB \cdot MD , then BKC=BDC\angle BKC = \angle BDC