MathDB
Jensen-type condition implies continuous extension

Source: 2021 Miklos Schweitzer, P3

November 2, 2021
functionreal analysis

Problem Statement

Let IRI \subset \mathbb{R} be a nonempty open interval and let f:IQRf: I \cap \mathbb{Q} \to \mathbb{R} be a function such that for all x,yIQx, y \in I \cap \mathbb{Q}, 4f(3x+y4)+4f(x+3y4)f(x)+6f(x+y2)+f(y). 4f\left(\frac{3x + y}{4}\right)+ 4f\left(\frac{x + 3y}{4}\right) \le f(x) + 6f\left(\frac{x + y}{2}\right)+ f(y). Show that ff can be continuously extended to II.