MathDB
Functional inequality

Source: 2020 Turkey TST P4

March 14, 2020
functionInequalityinequalities

Problem Statement

Let Z+Z^+ be positive integers set. f:Z+Z+f:\mathbb{Z^+}\to\mathbb{Z^+} is a function and we show ff...f f \circ f \circ ...\circ f with flf_l for all lZ+l\in \mathbb{Z^+} where ff is repeated ll times. Find all f:Z+Z+f:\mathbb{Z^+}\to\mathbb{Z^+} functions such that (n1)2020<l=12020fl(n)<n2020+n2019 (n-1)^{2020}< \prod _{l=1}^{2020} {f_l}(n)< n^{2020}+n^{2019} for all nZ+n\in \mathbb{Z^+}