MathDB
China Second Round Olympiad 2022 Test 2 Q 3

Source:

September 11, 2022
algebraInequalityChina

Problem Statement

Let a1,a2,,a100a_1,a_2,\cdots ,a_{100} be non-negative integers such that (1)(1) There are positive integersk100 k\leq 100 such that a1a2aka_1\leq a_2\leq \cdots\leq a_{k} and ai=0a_i=0 (i>k);(i>k);
(2)(2) a1+a2+a3++a100=100; a_1+a_2+a_3+\cdots +a_{100}=100;
(3)(3) a1+2a2+3a3++100a100=2022. a_1+2a_2+3a_3+\cdots +100a_{100}=2022.
Find the minimum of a1+22a2+32a3++1002a100. a_1+2^2a_2+3^2a_3+\cdots +100^2a_{100}.