MathDB
ARO 2005 inequality

Source: ARO 2005 - problem 9.3

April 30, 2005
inequalitiesalgebra unsolvedalgebra

Problem Statement

Given three reals a1,a2,a3>1,S=a1+a2+a3a_1,\,a_2,\,a_3>1,\,S=a_1+a_2+a_3. Provided ai2ai1>S{a_i^2\over a_i-1}>S for every i=1,2,3i=1,\,2,\,3 prove that 1a1+a2+1a2+a3+1a3+a1>1.\frac{1}{a_1+a_2}+\frac{1}{a_2+a_3}+\frac{1}{a_3+a_1}>1.