MathDB
Good functions from integers to reals

Source: STEMS 2022 Math Cat B P2

January 24, 2022
algebrafunctional equation

Problem Statement

Let S\mathbb{S} be the set of all functions f:ZRf:\mathbb{Z}\rightarrow \mathbb{R}. Now, consider the function g:SS,g(f(x))=f(x+1)f(x)g:\mathbb{S} \rightarrow \mathbb{S} ,g(f(x)) = f(x + 1)-f(x). Now, we call a function fSf \in \mathbb{S} good if gn(f(x))=0g^n(f(x))=0 for some natural nn. Prove that if stSs \not = t \in S are good functions then s(m)t(m)s(m)-t(m) is 0 for only finitely many mZm \in \mathbb{Z}.