MathDB
Interesting inequality

Source: St Petersburg Olympiad 2014, Grade 10, P4

October 26, 2017
algebrainequalities

Problem Statement

a1a2...a100n>0a_1\geq a_2\geq... \geq a_{100n}>0 If we take from (a1,a2,...,a100n)(a_1,a_2,...,a_{100n}) some 2n+12n+1 numbers b1b2...b2n+1b_1\geq b_2 \geq ... \geq b_{2n+1} then b1+...+bn>bn+1+...b2n+1b_1+...+b_n > b_{n+1}+...b_{2n+1} Prove, that (n+1)(a1+...+an)>an+1+an+2+...+a100n(n+1)(a_1+...+a_n)>a_{n+1}+a_{n+2}+...+a_{100n}