MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
TST Round 1
2019 Taiwan TST Round 1
1
Extremely Hard Inequality :>
Extremely Hard Inequality :>
Source: 2019 Taiwan TST Round 1
March 31, 2020
inequalities
Problem Statement
Assume
a
1
≥
a
2
≥
⋯
≥
a
107
>
0
a_{1} \ge a_{2} \ge \dots \ge a_{107} > 0
a
1
≥
a
2
≥
⋯
≥
a
107
>
0
satisfy
∑
k
=
1
107
a
k
≥
M
\sum\limits_{k=1}^{107}{a_{k}} \ge M
k
=
1
∑
107
a
k
≥
M
and
b
107
≥
b
106
≥
⋯
≥
b
1
>
0
b_{107} \ge b_{106} \ge \dots \ge b_{1} > 0
b
107
≥
b
106
≥
⋯
≥
b
1
>
0
satisfy
∑
k
=
1
107
b
k
≤
M
\sum\limits_{k=1}^{107}{b_{k}} \le M
k
=
1
∑
107
b
k
≤
M
. Prove that for any
m
∈
{
1
,
2
,
…
,
107
}
m \in \{1,2, \dots, 107\}
m
∈
{
1
,
2
,
…
,
107
}
, the arithmetic mean of the following numbers
a
1
b
1
,
a
2
b
2
,
…
,
a
m
b
m
\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \dots, \frac{a_{m}}{b_{m}}
b
1
a
1
,
b
2
a
2
,
…
,
b
m
a
m
is greater than or equal to
M
N
\frac{M}{N}
N
M
Back to Problems
View on AoPS