MathDB
Sequence of polynomials with recursion

Source: Czech and Slovak Olympiad 1972, National Round, Problem 3

July 10, 2024
algebrapolynomialSequencerecurrence relation

Problem Statement

Consider a sequence of polynomials such that P0(x)=2,P1(x)=xP_0(x)=2,P_1(x)=x and for all n1n\ge1 Pn+1(x)+Pn1(x)=xPn(x).P_{n+1}(x)+P_{n-1}(x)=xP_n(x). a) Determine the polynomial Qn(x)=Pn2(x)xPn(x)Pn1(x)+Pn12(x)Q_n(x)=P^2_n(x)-xP_n(x)P_{n-1}(x)+P^2_{n-1}(x) for n=1972.n=1972. b) Express the polynomial (Pn+1(x)Pn1(x))2\bigl(P_{n+1}(x)-P_{n-1}(x)\bigr)^2 in terms of Pn(x),Qn(x).P_n(x),Q_n(x).