MathDB
China South East Mathematical Olympiad 2017 Grade11 Q3

Source: China Jiangxi , Jul 30, 2017

July 30, 2017
inequalitiesalgebraChinaBPSQ

Problem Statement

Let a1,a2,,an+1>0a_1,a_2,\cdots,a_{n+1}>0. Prove thati1naii=1nai+1i=1naiai+1ai+ai+1i=1n(ai+ai+1)\sum_{i-1}^{n}a_i\sum_{i=1}^{n}a_{i+1}\geq \sum_{i=1}^{n}\frac{a_i a_{i+1}}{a_i+a_{i+1}}\cdot \sum_{i=1}^{n}(a_i+a_{i+1})