MathDB
Problems
Contests
Undergraduate contests
IMC
2005 IMC
4
IMC 2005 day 2 pb 4
IMC 2005 day 2 pb 4
Source: Peter
July 26, 2005
calculus
derivative
geometry
trapezoid
integration
rectangle
IMC
Problem Statement
Let
f
:
R
→
R
f: \mathbb{R} \rightarrow \mathbb{R}
f
:
R
→
R
be a three times differentiable function. Prove that there exists
w
∈
[
−
1
,
1
]
w \in [-1,1]
w
∈
[
−
1
,
1
]
such that
f
′
′
′
(
w
)
6
=
f
(
1
)
2
−
f
(
−
1
)
2
−
f
′
(
0
)
.
\frac{f'''(w)}{6} = \frac{f(1)}{2}-\frac{f(-1)}{2}-f'(0).
6
f
′′′
(
w
)
=
2
f
(
1
)
−
2
f
(
−
1
)
−
f
′
(
0
)
.
Back to Problems
View on AoPS