MathDB
Sum of k-th powers - JBMO Shortlist

Source:

October 30, 2010
inequalities proposedinequalities

Problem Statement

Prove that (1k+2k)(1k+2k+3k)(1k+2k++nk) \sqrt{(1^k+2^k)(1^k+2^k+3^k)\ldots (1^k+2^k+\ldots +n^k)} 1k+2k++nk2k1+23k1++(n1)nk1n \ge 1^k+2^k+\ldots +n^k-\frac{2^{k-1}+2\cdot 3^{k-1}+\ldots + (n-1)\cdot n^{k-1}}{n} for all integers n,k2n,k \ge 2.