MathDB
Problems
Contests
Undergraduate contests
IMC
1996 IMC
4
IMC 1996 Problem 4
IMC 1996 Problem 4
Source: IMC 1996
March 5, 2021
Sequences
real analysis
Problem Statement
Let
a
1
=
1
a_{1}=1
a
1
=
1
,
a
n
=
1
n
∑
k
=
1
n
−
1
a
k
a
n
−
k
a_{n}=\frac{1}{n} \sum_{k=1}^{n-1}a_{k}a_{n-k}
a
n
=
n
1
∑
k
=
1
n
−
1
a
k
a
n
−
k
for
n
≥
2
n\geq 2
n
≥
2
. Show that i)
lim sup
n
→
∞
∣
a
n
∣
1
n
<
2
−
1
2
\limsup_{n\to \infty} |a_{n}|^{\frac{1}{n}}<2^{-\frac{1}{2}}
lim
sup
n
→
∞
∣
a
n
∣
n
1
<
2
−
2
1
; ii)
lim sup
n
→
∞
∣
a
n
∣
1
n
≥
2
3
\limsup_{n\to \infty} |a_{n}|^{\frac{1}{n}}\geq \frac{2}{3}
lim
sup
n
→
∞
∣
a
n
∣
n
1
≥
3
2
Back to Problems
View on AoPS