MathDB
IMC 1996 Problem 4

Source: IMC 1996

March 5, 2021
Sequencesreal analysis

Problem Statement

Let a1=1a_{1}=1, an=1nk=1n1akanka_{n}=\frac{1}{n} \sum_{k=1}^{n-1}a_{k}a_{n-k} for n2n\geq 2. Show that i) lim supnan1n<212\limsup_{n\to \infty} |a_{n}|^{\frac{1}{n}}<2^{-\frac{1}{2}}; ii) lim supnan1n23\limsup_{n\to \infty} |a_{n}|^{\frac{1}{n}}\geq \frac{2}{3}