MathDB
IMC 2016, Problem 6

Source: IMC 2016

July 28, 2016
IMCIMC 2016college contestsSequencesSummation

Problem Statement

Let (x1,x2,)(x_1,x_2,\ldots) be a sequence of positive real numbers satisfying n=1xn2n1=1{\displaystyle \sum_{n=1}^{\infty}\frac{x_n}{2n-1}=1}. Prove that k=1n=1kxnk22. \displaystyle \sum_{k=1}^{\infty} \sum_{n=1}^{k} \frac{x_n}{k^2} \le2.
(Proposed by Gerhard J. Woeginger, The Netherlands)