MathDB
Problems
Contests
National and Regional Contests
Nigeria Contests
Nigerian Senior Mathematics Olympiad Round 3
2019 Nigerian Senior MO Round 3
2
Triangle inequality
Triangle inequality
Source: Nigeria mo 3rd round problem 2
September 8, 2019
algebra
triangle inequality
inequalities
Problem Statement
Let
a
b
c
abc
ab
c
be real numbers satisfying
a
b
+
b
c
+
c
a
=
1
ab+bc+ca=1
ab
+
b
c
+
c
a
=
1
. Show that
∣
a
−
b
∣
∣
1
+
c
2
∣
\frac{|a-b|}{|1+c^2|}
∣1
+
c
2
∣
∣
a
−
b
∣
+
∣
b
−
c
∣
∣
1
+
a
2
∣
\frac{|b-c|}{|1+a^2|}
∣1
+
a
2
∣
∣
b
−
c
∣
>
=
>=
>=
∣
c
−
a
∣
∣
1
+
b
2
∣
\frac{|c-a|}{|1+b^2|}
∣1
+
b
2
∣
∣
c
−
a
∣
Back to Problems
View on AoPS