MathDB
integers

Source: Ukraine 2005 grade 8

July 24, 2009
number theory unsolvednumber theory

Problem Statement

Are there integers a,b,c,d,x,y,z,t a,b,c,d,x,y,z,t such that each of the numbers: |ay\minus{}bx|,|az\minus{}cx|,|at\minus{}dx|,|bz\minus{}cy|,|bt\minus{}dy|,|ct\minus{}dz| equals either 1 1 or 2005 2005?