MathDB
L(n),T(n)

Source: Iranian National Olympiad (3rd Round) 2006

August 26, 2006
abstract algebragroup theorynumber theory proposednumber theory

Problem Statement

For each nn, define L(n)L(n) to be the number of natural numbers 1an1\leq a\leq n such that nan1n\mid a^{n}-1. If p1,p2,,pkp_{1},p_{2},\ldots,p_{k} are the prime divisors of nn, define T(n)T(n) as (p11)(p21)(pk1)(p_{1}-1)(p_{2}-1)\cdots(p_{k}-1). a) Prove that for each nNn\in\mathbb N we have nL(n)T(n)n\mid L(n)T(n). b) Prove that if gcd(n,T(n))=1\gcd(n,T(n))=1 then φ(n)L(n)T(n)\varphi(n) | L(n)T(n).