MathDB
An asymmetric inequality

Source: Russian TST 2015, Day 7 P1 (Groups A & B)

April 21, 2023
algebrainequalities

Problem Statement

Let x,y,zx,y,z be positive real numbers. Prove that xy+yz+zxz(x+y)y(y+z)+x(y+z)z(z+x)+y(z+x)x(x+y).\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geqslant\frac{z(x+y)}{y(y+z)}+\frac{x(y+z)}{z(z+x)}+\frac{y(z+x)}{x(x+y)}.