MathDB
Putnam 1996 B6

Source:

June 6, 2014
Putnamcollege contests

Problem Statement

Let (a1,b1),(a2,b2),,(an,bn)(a_1,b_1),(a_2,b_2),\ldots ,(a_n,b_n) be the vertices of a convex polygon containing the origin in its interior. Prove that there are positive real numbers x,yx,y such that : (a1,b1)xa1yb1+(a2,b2)xa2yb2++(an,bn)xanybn=(0,0) (a_1,b_1)x^{a_1}y^{b_1}+(a_2,b_2)x^{a_2}y^{b_2}+\ldots +(a_n,b_n)x^{a_n}y^{b_n}=(0,0)