MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1999 All-Russian Olympiad
7
x^2+y^3>=x^3+y^4 implies x^3+y^3<=2
x^2+y^3>=x^3+y^4 implies x^3+y^3<=2
Source: All-Russian MO 1999
December 31, 2012
Russia
High school olympiad
algebra
Inequality
Problem Statement
Positive numbers
x
,
y
x,y
x
,
y
satisfy
x
2
+
y
3
≥
x
3
+
y
4
x^2+y^3 \ge x^3+y^4
x
2
+
y
3
≥
x
3
+
y
4
. Prove that
x
3
+
y
3
≤
2
x^3+y^3 \le 2
x
3
+
y
3
≤
2
.
Back to Problems
View on AoPS