MathDB
Function

Source: China TST 2003

June 29, 2006
functioninductionalgebra unsolvedalgebra

Problem Statement

Let SS be a finite set. ff is a function defined on the subset-group 2S2^S of set SS. ff is called \textsl{monotonic decreasing} if when XYSX \subseteq Y\subseteq S, then f(X)f(Y)f(X) \geq f(Y) holds. Prove that: f(XY)+f(XY)f(X)+f(Y)f(X \cup Y)+f(X \cap Y ) \leq f(X)+ f(Y) for X,YSX, Y \subseteq S if and only if g(X)=f(X{a})f(X)g(X)=f(X \cup \{ a \}) - f(X) is a \textsl{monotonic decreasing} funnction on the subset-group 2S{a}2^{S \setminus \{a\}} of set S{a}S \setminus \{a\} for any aSa \in S.