MathDB
sum \sin (<A _i MA_i)> sin 2 \pi/n + (n-2) sin \pi /n

Source: Ukraine TST 2011 p1

May 7, 2020
inequalitiestrigonometry

Problem Statement

Given a right n n -angle A1A2An {{A} _ {1}} {{A} _ {2}} \ldots {{A} _ {n}} , n4n \ge 4 , and a point M M inside it. Prove the inequality sin(A1MA2)+sin(A2MA3)++sin(AnMA1)>sin2πn+(n2)sinπn\sin (\angle {{A} _ {1}} M {{A} _ {2}}) + \sin (\angle {{A} _ {2}} M {{A} _ {3}} ) + \ldots + \sin (\angle {{A} _ {n}} M {{A} _ {1}})> \sin \frac{2 \pi}{n} + (n-2) sin \frac{\pi}{n}