MathDB
Rank of Matrix and Its Trance

Source: SEEMOUS 2020 P3

May 2, 2020
linear algebramatrix

Problem Statement

Let nn be a positive integer, kCk\in \mathbb{C} and AMn(C)A\in \mathcal{M}_n(\mathbb{C}) such that Tr A0\text{Tr } A\neq 0 and rank A+rank ((Tr A)InkA)=n.\text{rank } A +\text{rank } ((\text{Tr } A) \cdot I_n - kA) =n. Find rank A\text{rank } A.