MathDB
Functional equation on positive reals

Source: Middle European Mathematical Olympiad 2012 - Individuals I-1

September 14, 2012
functionalgebrafunctional equationalgebra proposedInequality

Problem Statement

Let R+ \mathbb{R} ^{+} denote the set of all positive real numbers. Find all functions R+R+ \mathbb{R} ^{+} \to \mathbb{R} ^{+} such that f(x+f(y))=yf(xy+1) f(x+f(y)) = yf(xy+1) holds for all x,yR+ x, y \in \mathbb{R} ^{+} .