MathDB
CMI just asks Schur directly

Source:

May 19, 2024
inequalitiesalgebra

Problem Statement

(a) For non negetive a,b,c,ra,b,c, r prove that ar(ab)(ac)+br(ba)(bc)+cr(ca)(cb)0a^r(a-b)(a-c) + b^r(b-a)(b-c) + c^r (c-a)(c-b) \geq 0 (b) Find an inequality for non negative a,b,ca,b,c with a4+b4+c4+abc(a+b+c)a^4+b^4+c^4 + abc(a+b+c) on the greater side. (c) Prove that if abc=1abc = 1 for non negative a,b,ca,b,c, a4+b4+c4+a3+b3+c3+a+b+ca2+b2c+b2+c2a+c2+a2b+3a^4+b^4+c^4+a^3+b^3+c^3+a+b+c \geq \frac{a^2+b^2}{c}+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+3