MathDB
g(m + n) = g(m) + mn(m + n) + g(n)

Source:

May 9, 2023
CMI 2023functional equation

Problem Statement

Solve for g:Z+Z+g : \mathbb{Z}^+ \to \mathbb{Z}^+ such that
g(m+n)=g(m)+mn(m+n)+g(n)g(m + n) = g(m) + mn(m + n) + g(n)
Show that g(n)g(n) is of the form i=0dcini\sum_{i=0}^{d} {c_i n^i} \\ and find necessary and sufficient conditions on dd and c0,c1,,cdc_0, c_1, \cdots , c_d