MathDB
least positive integer k so that k! S_{2016} \in Z

Source: JBMO Shortlist 2016 C1

October 14, 2017
Sumcombinatoricspositive integers

Problem Statement

Let SnS_n be the sum of reciprocal values of non-zero digits of all positive integers up to (and including) nn. For instance, S13=11+12+13+14+15+16+17+18+19+11+11+11+11+12+11+13S_{13} = \frac{1}{1}+ \frac{1}{2}+ \frac{1}{3}+ \frac{1}{4}+ \frac{1}{5}+ \frac{1}{6}+ \frac{1}{7}+ \frac{1}{8}+ \frac{1}{9}+ \frac{1}{1}+ \frac{1}{1}+ \frac{1}{1}+ \frac{1}{1}+ \frac{1}{2}+ \frac{1}{1}+ \frac{1}{3} . Find the least positive integer kk making the number k!S2016k!\cdot S_{2016} an integer.