MathDB
f(x+y)=f(x)+f(y), f(P(x))=f(x)

Source: 2017 Thailand October Camp 3.1

February 25, 2022
functional equationalgebra

Problem Statement

Let PP be a given quadratic polynomial. Find all functions f:RRf : \mathbb{R}\to\mathbb{R} such that f(x+y)=f(x)+f(y) and f(P(x))=f(x) for all x,yR.f(x+y)=f(x)+f(y)\text{ and } f(P(x))=f(x)\text{ for all }x,y\in\mathbb{R}.