MathDB
(1+\sqrt2)^{2k+1}=n(k)+a(k)

Source: Netherlands - Dutch MO 1989 p5

December 25, 2022
algebra

Problem Statement

kNn(k)N,a(k):0<a(k)<1[(1+2)2k+1=n(k)+a(k)]\forall k\in N \,\,\, \exists n(k) \in N, a(k):0<a(k)<1 [(1+\sqrt2)^{2k+1}=n(k)+a(k)]
Prove: (n(k)+a(k))a(k)=1(n(k) + a(k))a(k) = 1, for all kNk \in N, and calculate limka(k)\lim_{k \to \infty }a(k)