modular arithmeticparameterizationnumber theory proposednumber theory
Problem Statement
For all integers x,y,z, let S(x,y,z)=(xy−xz,yz−yx,zx−zy). Prove that for all integers a, b and c with abc>1, and for every integer n≥n0, there exists integers n0 and k with 0<k≤abc such that Sn+k(a,b,c)≡Sn(a,b,c)(modabc). (S1=S and for every integer m≥1, Sm+1=S∘Sm.(u1,u2,u3)≡(v1,v2,v3)(modM)⟺ui≡vi(modM)(i=1,2,3).)