MathDB
S^{n+k}(a,b,c) = S^{n}(a,b,c) (mod abc)

Source: Turkey TST 2001 - P3

April 5, 2013
modular arithmeticparameterizationnumber theory proposednumber theory

Problem Statement

For all integers x,y,zx,y,z, let S(x,y,z)=(xyxz,yzyx,zxzy).S(x,y,z) = (xy - xz, yz-yx, zx - zy). Prove that for all integers aa, bb and cc with abc>1abc>1, and for every integer nn0n\geq n_0, there exists integers n0n_0 and kk with 0<kabc0<k\leq abc such that Sn+k(a,b,c)Sn(a,b,c)(modabc).S^{n+k}(a,b,c) \equiv S^n(a,b,c) \pmod {abc}. (S1=SS^1 = S and for every integer m1m\geq 1, Sm+1=SSm.S^{m+1} = S \circ S^m. (u1,u2,u3)(v1,v2,v3)(modM)uivi(modM)(i=1,2,3).(u_1, u_2, u_3) \equiv (v_1, v_2, v_3) \pmod M \Longleftrightarrow u_i \equiv v_i \pmod M (i=1,2,3).)