Maximal constant
Source: ChInese TST 2009 P2
April 4, 2009
inductionratioLaTeXinequalitiesblogsinequalities proposed
Problem Statement
Given an integer , find the maximal constant having the following property: if a sequence of real numbers satisfies 0 \equal{} a_{0}\le a_{1}\le a_{2}\le \cdots\le a_{n}, and a_{i}\ge\frac {1}{2}(a_{i \plus{} 1} \plus{} a_{i \minus{} 1}),i \equal{} 1,2,\cdots,n \minus{} 1, then (\sum_{i \equal{} 1}^n{ia_{i}})^2\ge \lambda (n)\sum_{i \equal{} 1}^n{a_{i}^2}.