MathDB
Striking notorious similarity with ICMC 2021 Round 2

Source: IMC 2022 Day 2 Problem 6

August 5, 2022
number theoryprime numbersmodular arithmeticIMC 2022

Problem Statement

Let p3p \geq 3 be a prime number. Prove that there is a permutation (x1,,xp1)(x_1,\ldots, x_{p-1}) of (1,2,,p1)(1,2,\ldots,p-1) such that x1x2+x2x3++xp2xp12(modp)x_1x_2 + x_2x_3 + \cdots + x_{p-2}x_{p-1} \equiv 2 \pmod p.