MathDB
Continuous function

Source: 239 MO 2024 S1

May 22, 2024
functionalgebra

Problem Statement

Let f:R0R0f:\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} be a continuous function such that f(0)=0f(0)=0 and f(x)+f(f(x))+f(f(f(x)))=3xf(x)+f(f(x))+f(f(f(x)))=3x for all x>0x>0. Show that f(x)=xf(x)=x for all x>0x>0.