MathDB
probability inequality

Source: miklos schweitzer 1993 q10

October 22, 2021
probability and statsinequalities

Problem Statement

Let U1,U2,U3U_1 , U_2 , U_3 be iid random variables on [0,1], which in order of magnitude, U1U2U3U_1^{\ast} \le U_2^{\ast} \leq U_3 ^ {\ast}. Let α,p1,p2,p3[0,1]\alpha, p_1 , p_2 , p_3 \in [0,1] such that P(Ujpj)=αP(U_j ^ {\ast} \ge p_j)= \alpha ( j = 1,2,3). Prove that P(p1+(p2p1)U3+(p3p2)U2+(1p3)U112)1αP \left( p_1 + (p_2-p_1) U_3^{\ast} + (p_3- p_2) U_2^{\ast} + (1-p_3) U_1^{\ast} \geq \frac{1}{2} \right) \geq 1-\alpha