MathDB
Putnam 1977 B5

Source:

April 7, 2022
college contests

Problem Statement

Suppose that a1,a2,ana_1,a_2,\dots a_n are real (n>1)(n>1) and A+i=1nai2<1n1(i=1nai)2.A+ \sum_{i=1}^{n} a^2_i< \frac{1}{n-1} (\sum_{i=1}^{n} a_i)^2. Prove that A<2aiajA<2a_ia_j for 1i<jn.1\leq i<j\leq n.